Femtosecond stimulated Raman spectroscopy by six-wave mixing.
نویسندگان
چکیده
Femtosecond Stimulated Raman Spectroscopy (FSRS) is motivated by the knowledge of the molecular geometry changes that accompany sub-picosecond chemical reactions. The detection of vibrational resonances throughout the entire fingerprint region of the spectrum with sub-100-fs delay precision is fairly straightforward to accomplish with the FSRS technique. Despite its utility, FSRS must contend with substantial technical challenges that stem from a large background of residual laser light and lower-order nonlinearities when all laser pulses are electronically resonant with the equilibrium system. In this work, a geometry based on five incident laser beams is used to eliminate much of this undesired background in experiments conducted on metmyoglobin. Compared to a three-beam FSRS geometry with all electronically resonant laser pulses, the five-beam approach described here offers major improvements in the data acquisition rate, sensitivity, and background suppression. The susceptibility of the five-beam geometry to experimental artifacts is investigated using control experiments and model calculations. Of particular concern are undesired cascades of third-order nonlinearities, which are known to challenge FSRS measurements carried out on electronically off-resonant systems. It is generally understood that "forbidden" steps in the desired nonlinear optical processes are the origin of the problems encountered under off-resonant conditions. In contrast, the present experiments are carried out under electronically resonant conditions, where such unfortunate selection rules do not apply. Nonetheless, control experiments based on spectroscopic line shapes, signal phases, and sample concentrations are conducted to rule out significant contributions from cascades of third-order processes. Theoretical calculations are further used to estimate the relative intensities of the direct and cascaded responses. Overall, the control experiments and model calculations presented in this work suggest promise for multidimensional resonance Raman investigations of heme proteins.
منابع مشابه
Time-gated pre-resonant femtosecond stimulated Raman spectroscopy of diethylthiatricarbocyanine iodide.
We present time-gated femtosecond stimulated Raman spectroscopy (fSRS) under the pre-resonance Raman conditions of diethylthiatricarbocyanine (DTTC) iodide. A 'pseudo emission-free' condition is achieved by delivering the probe beam ahead of the pump beam. Regeneratively amplified pulse trains are employed to create an angle-geometry (non-collimated) mixing between the pump and probe beams, lea...
متن کاملObservation of sum-frequency-generation-induced cascaded four-wave mixing using two crossing femtosecond laser pulses in a 0.1 mm beta-barium-borate crystal.
We demonstrate the simultaneous generation of multicolor femtosecond laser pulses spanning the wavelength range from UV to near IR in a 0.1 mm Type I beta-barium borate crystal from 800 nm fundamental and weak IR super-continuum white light (SCWL) pulses. The multicolor broadband laser pulses observed are attributed to two concomitant cascaded four-wave mixing (CFWM) processes as corroborated b...
متن کاملAnalysis of femtosecond stimulated Raman spectroscopy of excited-state evolution in bacteriorhodopsin.
The dispersive lines observed in time-resolved femtosecond stimulated Raman spectroscopy (FSRS), using a pair of 809 nm, 3 ps Raman pump, and 840-960 nm ultrashort probe pulse, for the first 500 fs photoisomerization dynamics in the excited state of bacteriorhodopsin, BR* (S(1)), created by a prior 500 nm, 35 fs actinic pump pulse, have previously been attributed to Raman initiated by nonlinear...
متن کاملSum-Frequency-Generation-Based Laser Sidebands for Tunable Femtosecond Raman Spectroscopy in the Ultraviolet
Femtosecond stimulated Raman spectroscopy (FSRS) is an emerging molecular structural dynamics technique for functional materials characterization typically in the visible to near-IR range. To expand its applications we have developed a versatile FSRS setup in the ultraviolet region. We use the combination of a narrowband, ~400 nm Raman pump from a home-built second harmonic bandwidth compressor...
متن کاملAnalysis of time resolved femtosecond and femtosecond/picosecond coherent anti-Stokes Raman spectroscopy: application to toluene and Rhodamine 6G.
The third-order polarization for coherent anti-Stokes Raman scattering (CARS) from a pure state is described by 48 terms in perturbation theory, but only 4 terms satisfy the rotating wave approximation. They are represented by Feynman dual time-line diagrams and four-wave mixing energy level diagrams. In time-resolved (tr) fs and fs/ps CARS from the ground vibrational state, one resonant diagra...
متن کاملSingle-fiber-laser-based wavelength tunable excitation for coherent Raman spectroscopy
We demonstrate coherent Raman spectroscopy (CRS) using a tunable excitation source based on a single femtosecond fiber laser. The frequency difference between the pump and the Stokes pulses was generated by soliton self-frequency shifting in a nonlinear optical fiber. Spectra of C─H stretches of cyclohexane were measured simultaneously by stimulated Raman gain (SRG) and coherent anti-Stokes Ram...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 142 21 شماره
صفحات -
تاریخ انتشار 2015